This post is concerned with liquid wastes as found at permanent locations. The waste water discussed in this section is predominantly of domestic origin. Varying amounts of industrial and laboratory waste waters can be collected and treated with the sanitary sewage. The primary purpose of the treatment of sewage is to prevent the pollution of the receiving waters. Many techniques have been devised to accomplish this aim for both small and large quantities of sewage.
In general, these processes are divided into three stages: preliminary (physical), primary (physical) treatment and secondary (biological) treatment. Minimally, waste water should receive primary (physical removal/settling) and secondary (biological) treatment, which can be followed by disinfection before discharge. More advanced processes (advanced or tertiary treatment) may be required for special wastes. When the effluent from secondary treatment is unacceptable, a third level of treatment, tertiary treatment, can be employed. There are many basic types of sewage treatment plants employing both primary and secondary treatment stages that are in use today for treating large quantities of sewage.
The purpose of a sewage collection system is to remove waste water from points of origin to a treatment facility or place of disposal. The collection system consists of the sewers (pipes and conduits) and plumbing necessary to convey sewage from the point(s) of origin to the treatment system or place of disposal. It is necessary that the collection system be designed so that the sewage will reach the treatment system as soon as possible after entering the sewer. If the length of time in the sewers is too long, the sewage will be anaerobic when it reaches the treatment facilities.
Sanitary sewage collection systems should be designed to remove domestic sewage only. Surface drainage is excluded to avoid constructing large sewers and treating large volumes of sewage diluted by rainwater during storms. Sewers which exclude surface drainage are called sanitary sewers, and those which collect surface drainage in combination with sanitary sewage are called combined sewers.
Except for force mains, sewers are laid to permit gravity flow of their contents. Unlike water in a water distribution system, the contents of a sewer do not flow under pressure. Usually the slope is such that a flow rate of 0.03 meter (m) per second or more is maintained when the line is flowing half full to full. This is a self-cleansing velocity and prevents solids from settling in the sewer pipes. To the maximum extent practical, sewers are laid in straight lines. Corners and sharp bends slow the flow rate, permit clogging, and make line cleaning difficult.
Removing grease from sewage is essential to the proper functioning of sewage systems. At fixed installations, grease is collected by ceramic or cast iron grease interceptors installed at kitchens and other facilities that generate grease and by concrete or brick grease traps outside the building. Approximately 90 per cent of the grease will be removed from greasy wastes by properly maintained grease interceptors and traps.
No comments:
Post a Comment